UTILIZATION OF ¹³C-¹³C COUPLING IN STRUCTURAL AND BIOSYNTHETIC STUDIES. VIII.¹⁾ THE CYCLIZATION PATTERN OF A FUNGAL METABOLITE, SCYTALONE.

Haruo Seto* and Hiroshi Yonehara

Institute of Applied Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan, 113

(Received in Japan 11 December 1976; received in UK for publication 6 January 1977)

Naphthoquinones lacking any C-alkyl substituents such as flaviolin (I) are biosynthetically very unique among polyketide metabolites in that they do not possess the clear starter unit of a polyketide chain. This structural feature has allowed the proposal of several cyclization patterns for pentaketides as shown below.²)

Fia.1

In order to investigate the cyclization pattern in question of these metabolites by the double labeling method³⁾, we chose a fungal metabolite, scytalone (II) as a model compound, since the polyketide origin of which has been proved by making use of CH₃¹³CO₂Na and ¹³C-nmr spectro-scopy.⁴⁾ The metabolite was isolated for the first time from *Scytalidium* sp.⁵, however, *Phialo-phora lagerbergii*, more recently reported to be a producing organism of scytalone⁴⁾, was used for our experiment because of higher production yield.

The scytalone labeled with 13 CH₃ 13 CO₂Na was obtained as reported by Turner et al⁴) and the 13 C- 13 C coupling constants observed in the 13 C-nmr spectrum are summarized in Table together with the chemical shifts of carbon signals which were, within experimental error, in agreement with the reported values⁴) with one exception (observed 165.4 ppm, reported 160.9 ppm). Although the assignment of the 13 C-nmr spectrum of scytalone has been previously made, two pairs of signals, i.e. C-2 and C-4, and C-6 and C-8, remained to be differentiated. The comparison of the magnitude of 13 C- 13 C coupling constants facilitated the unambiguous assignment to be made (*vide infra*) as shown in Table.

	Table ⁸)		Of the most interest with this result is the fact that all carbon
carbon	δ _C	$J_{C-C}(H_Z)$	signals but one at 66.4 ppm showed two kinds of $^{13}C^{-13}C$ coupling of
4	38.9	37,40	equal signal intensities. For example, C-1 (δ_{C} =202.1 ppm) is coupled
2	47.1	36,40	to C-8a ($\delta_{\rm C}$ =111.5 ppm, J _{C-C} =55Hz) as well as to a signal at $\delta_{\rm C}$ =47.1 ppm
3	66.4	36	$(J_{C-C}^{=40Hz})$ which, therefore, must be assigned to C-2. ⁶) By elimina-
7	101.3	67,70	tion, the remaining signal at 38.9 ppm is ascribed to C-4. Likewise,
5	108.9	62,63	C-8 was differentiated from C-6 based on the coupling between C-8a.
8a	111.5	56 ; 61*	This splitting pattern can be explained by assuming that C-1 was
4a	145.8	41,62	coupled only to either of C-2 and C-8a and not both of them in a given
6	165.4	64,67	molecule, otherwise the splitting pattern of C-l would be a doublet of
8	166.0	61,70	doublets instead of two independent doublets as really observed. Thus,
l	202.1	40, 55	the labeled scytalone is a mixture of two differently labeled molecules
*Due to	the ove	rlapping	as shown below.

"Due to the overlapping of the C-5 signal, these values were obtained by taking a noise offresonance spectrum.

This phenomenon implies the involvement of a symmetric intermediate such as 1,3,6,8-tetrahydroxynaphthalene (III) in the biosynthesis of scytalone and excludes the folding pattern (a) in Fig. 1. Although flaviolin (I) has been believed to be formed from scytalone via (III)⁷⁾, our experiment demonstrates that (III) is most likely a common intermediate for both scytalone and flaviolin.

References and Footnotes

- 1) For part VII, see, H. Seto, T. Sato, S. Urano, J. Uzawa and H. Yonehara, Tetrahedron Lett. <u>1976</u>, 4367.
- 2) W. B. Turner, "Fungal Metabolites" p.130. Academic Press. London. 1971.
- 3) H. Seto, T. Sato and H. Yonehara, J. Amer. Chem. Soc. 95, 8461 (1973).
- 4) D. C. Aldridge, A. B. Davies, M. R. Jackson and W. B. Turner, J.C.S. Perkin I. <u>1974</u>, 1540.
- 5) J. A. Findley and D. Kwan, Can. J. Chem. <u>51</u>, 1617 (1973).
- 6) This assignment was corroborated by observing characteristic 1,3-coupling (²J_C-⁹Hz) between C-2 and C-8a which are connected by a carbony carbon. This long range coupling is caused by the simultaneous incorporation of two ¹³CH₃¹³CO₂H molecules into the adjacent positions (C-2 and C-3, and C-1 and C-8a) of a polyketide chain.
- 7) A. A. Bell, R. D. Stipnovic and J. E. Puhall, Tetrahedron, <u>32</u>, 1353 (1976).
- 8) Determined on a JEOL FX-100 nmr spectrometer operating at 25.05 MHz, in d₆-acetone, relative to internal TMS. Data points 16K, pulse width $\pi/4$, spectral width; for measurement of ¹³C-¹³C coupling constants, 3KHz; for a whole spectrum, 6KHz.